

TotalEnergies

# Modeling adsorption isotherms

Philip Llewellyn

R&D Manager for CCS and CO<sub>2</sub> Utilisation Sustainability Program

## Why adsorption : (1) characterization, (2) use





#### Pilot-scale testing



0,1 t<sub>CO2</sub>/day

#### Industrial use





Zeeland : 900 kt/yr



## **Modeling adsorption isotherms**

(1) Models to aid interpretation of adsorption phenomena
 → often from physisorption isotherms (T < Tc)</li>
 → materials characterization → materials KPI

(2) Models to predict KPI's for initial process evaluation

- $\rightarrow$  often at room temperature and above
- $\rightarrow$  sometimes at above atmospheric pressure

(3) What KPI's can we predict?

 $\rightarrow$  Energies

Interaction of a molecule between two plane (U 9-3 potential function)

P (bar)

- UFF-DDEC

0.6

- UFF-MOF neutra

 $\rightarrow$  Selectivities

Lessons learned



Sub-critical adsorption isotherm (e.g. N<sub>2</sub>@77K or Ar@87K)

 $\rightarrow$  In the chat, can you give a quick interpretation of the three phenomena (A – B – C) observed



## Why model isotherms ?

(1) to aid mechanism interpretation
 → model adsorption phenomena

e.g. Materials characterization -> KPI

## So how do we mathematically model different adsorption phenomena (1) Low coverage



- Low coverage
   Infinitely low
  - Infinitely low concentrations  $\rightarrow$  no lateral interactions  $\rightarrow$  equation of state analogous with ideal gas law
  - Initial linear region observed in the isotherm ightarrow amount adsorbed proportional to pressure
  - Analogy to Henry's law

### • n<sup>a</sup> = K<sub>H</sub>(T)•p

- K<sub>H</sub> : energetic constant (Henry constant), only depends on temperature





5 | Modeling Adsorption Isotherms – Philip Llewellyn, AFA School, 26<sup>th</sup> January 2022

William Henry (1774-1836)

## Calculating the Henry constant



 $n^{a} = K_{H}(T)P$  $K_{H}(T) = \lim_{P \to 0} (n^{a}/P)$ 





### Calculating the Henry constant

• Initial linear region of isotherm:

 $n^{a} = K_{H}(T)P$  $K_{H}(T) = \lim_{P \to 0} (n^{a}/P)$ 

• Often represent  $\ln(n^{a}/P)$  as a function of  $n^{a}$ :

 $\ln (K_H(T)) = \lim_{P \to 0} (\ln(n^a/P)) = -1,214$  $K_H(T) = 0,297$ 









How do we mathematically model different adsorption phenomena

(a) Monolayer formation

## Irving Langmuir, 1881-1957





#### Source Condensation / Evaporation Mechanisms

- All sites are energetically identical
- Gas sticks to the surface : 1 layer only possible
- No lateral interactions
- Gas bounces off a species already adsorbed



Irving Langmuir (1881 – 1957)



## Langmuir isotherm (1918)

• Hypotheses:



- localized adsorption: one molecule per adsorption site  $\rightarrow$  monolayer of capacity

 $b = b_{\infty} \exp\left(\frac{Q}{R_a T}\right)$ 

- no lateral interactions between adsorbed molecules

$$\theta = \frac{N^a}{N^s} = \frac{n^a}{n_m^a}$$

N<sup>a</sup> = number of adsorbed moleculesN<sup>s</sup> = number of adsorption sites



**b** is the coefficient of adsorption or affinity constant  $n_m^a$  is the monolayer capacity



## Langmuir isotherm & Thermodynamic coherence



$$n^a = n_m^a \frac{bP}{1+bP}$$

- At very low pressure:  $bP\ll 1$ 
  - Henry's law:  $n^a = n^a_m b P$
- At sufficiently high pressure:
  - Finite limit:  $bP \gg 1$

$$n^a = n_m^a$$

Henry's law at low pressure
Finite limit at high pressure



#### BUT

- Phenomenon models only monolayer adsorption
- Used for Chemisorption or at Room Temperature



→ In the chat, can you name the Type of isotherm according to the IUPAC ?



How do we mathematically model different adsorption phenomena

(b) Mono/Multilayer formation on a non-porous solid

#### 13 | Modeling Adsorption Isotherms – Philip Llewellyn, AFA School, 26<sup>th</sup> January 2022

## How do we model (b) Monolayer/Multilayer coverage ?

 $C \approx \exp\left(\frac{E_1 - E_L}{E_1 - E_L}\right)$ 

- Multilayer coverage
  - Brunauer, Emmet, Teller 1938
    - Surface adsorption sites equivalent
    - No lateral interactions
    - Energy of adsorption of second and further layers = E<sub>Liquefaction</sub>
    - At any point on the isotherm the solid is in equilibrium with any number of adsorbed layers

• 
$$\frac{n}{n_m^a} = \frac{Cx}{1-x} \cdot \frac{1-(N+1)x^N + Nx^{N+1}}{1+(C-1)x - Cx^{N+1}}$$

- $x = p/p^{\circ}$
- C : energetic constant
- N : number of layers formed

#### - Henry's law at low pressure







## How do we model (b) Monolayer/Multilayer coverage ?

• Brunauer, Emmet, Teller Equation

$$\frac{n}{n_m^a} = \frac{Cx}{1-x} \cdot \frac{1-(N+1)x^N + Nx^{N+1}}{1+(C-1)x - Cx^{N+1}}$$









KPI  $\rightarrow$  estimation of the available surface area  $\rightarrow$  BET area

\* For further reading Adsorption by Powders and Porous Solids, Rouquerol et al., Academic Press, 2013





How do we mathematically model different adsorption phenomena

(c) Multilayer formation

## How do model (c) Multilayer coverage

- Other relationships to model multilayer coverage
  - Relate thickness of liquid-like adsorbed film to relative pressure of gas phase



- Harkins & Jura (N<sub>2</sub>@77K)

$$t = \left(\frac{0.1399}{0.034 - \log(p/p^{\circ})}\right)^{1/2}$$

- Frankel, Halsey & Hill (N<sub>2</sub>@77K)





Experimental data from «de Boer» 'Physical and Chemical Aspects of Adsorbents and Catalysts' Ed B. G. Linsen, Acad. Press, London (1970) p.33.

## KPI (t-method) → estimation of the 'external' surface area







→ In the chat, can you name the Type of isotherm according to the IUPAC ?



## How do we model different adsorption phenomena

## (d) Capillary condensation

## Phenomena modeled (4) Capillary condensation in Mesoporous solids





William Thomson, Lord Kelvin (1824-1907)





#### ✓ Kelvin equation

 $\square$  relates p/p° of pore filling to capillary radius

 $\square$   $\gamma$  = surface tension; V<sub>m</sub> = molar volume

\* W. T. Thomson, Phil. Mag. 42, 448 (1871)

**KPI** (via BJH) **→** estimation of pore size





→ In the chat, can you name the Type of isotherm according to the IUPAC ?



## How do we model different adsorption phenomena

(e) Micropore filling

**!** Not a Langmuir isotherm

Horwath-Kawazoe model to estimate micropore size/volume



## CCCCCCC H

✓ Possible to relate micropore size to relative pressure of pore filling



### Méthode de Horwath-Kawazoe : calculs



- Pression remplissage des pores  $\infty$  interaction gaz-solide
- Mis au point pour des micropores en fente d'un charbon

CCCCCCC CCCCCC

$$\Phi(z)_{pore} = \Phi_{g-s}(z) + \Phi_{g-s}(H-z)$$

## Méthode de Horvath et Kawazoe (HK)



#### **Hypothèses**

- Pores plats de largeur H
- Pression de remplissage des micropores liée à l'énergie d'interaction adsorbableadsorbant

<u>Calculs</u> : N<sub>2</sub>,77 K / tamis moléculaire de C

$$\ln(p / p^{\circ}) = \frac{61,23}{(H - 0,64)} \left[ \frac{1,895 \ 10^{-3}}{(H - 0,32)^3} - \frac{2,709 \ 10^{-7}}{(H - 0,32)^9} - 0,05014 \right]$$

## Méthodes de Horwath-Kawazoe et de Saito-Foley : formules !



• H-K

- 10-4 fonction de potentiel plus expression des interactions :

$$\Phi(z)_{pore} = k \int \left[ \left( \frac{\sigma}{z} \right)^{10} - \left( \frac{\sigma}{z} \right)^4 + \left( \frac{\sigma}{H-z} \right)^{10} - \left( \frac{\sigma}{H-z} \right)^4 \right]$$
  
• S-F  $\ln \left( \frac{p}{p^0} \right) = \frac{62.38}{H-0.64} \cdot \left[ \frac{1.895 \cdot 10^{-3}}{(H-0.32)^3} - \frac{2.7087 \cdot 10^{-7}}{(H-0.32)^9} - 0.05014 \right]$ 

$$\ln\left(\frac{p}{p^{0}}\right) = \frac{28.57}{H - 0.612} \cdot \left[\frac{1.584 \cdot 10^{-3}}{(H - 0.306)^{3}} - \frac{1.729 \cdot 10^{-7}}{(H - 0.306)^{9}} - 4.793 \cdot 10^{-2}\right]$$



Frederic Villiéras Nancy





## Combining various equations to fully model the isotherm



Texture and surface energetic heterogeneity of solids from modeling of low pressure gas adsorption isotherms F Villiéras, JM Cases, M François, LJ Michot, F Thomas Langmuir 8 (7), 1789-1795

Henry V Langmuir BET Harkins & Jura / FHH **Kelvin Polyani/Dubinin** Horwath-Kawazoe





Modeling adsorption phenomena for porous materials characterization

 $\rightarrow$  sub-critical adsorption













Why model isotherms ?

## (2) to predict KPI's

e.g. Initial process evaluation

- → often at room temperature and above Anthropogenic  $CO_2$  capture @ 40-50°C → TSA
- → sometimes at above atmospheric pressure Natural gas treatment /  $H_2$  production → PSA

**TotalEnergies** 



→ In the chat, can you write down which of the above equations are most often be used for RT isotherm treatment



## Why model isotherms ?

## (2) to predict KPI's

e.g. Initial process evaluation

- → often at room temperature and above Anthropogenic  $CO_2$  capture @ 40-50°C → TSA
- → sometimes at above atmospheric pressure Natural gas treatment /  $H_2$  production → PSA





## Why model isotherms ?

(2) to predict KPI's for initial process evaluation



## The empirical approach

## Single component equations: Freundlich equation

• Initial linear region of isotherm:

 $n^a = K_H(T)P$ 

$$K_H(T) = \lim_{P \to 0} (n^a/P)$$

 $n^a = K_H(T)P^{1/t}$ 

- No finite limit at high pressure

- No thermodynamic founding

• Extension to describe the plateau:

 $n^a$ 

8 ·



## Single component equations: Comparison







### Equations derived from Langmuir

## Pure component equations: Multi-site Langmuir equation

- Hypothesis: heterogeneous surface with several distinct types of homogeneous adsorption sites
- One Langmuir equation per type of site:

$$n^{a} = \sum_{i} n^{a}_{m,i} \frac{b_{i}P}{1 + b_{i}P}$$

- Often used for crystalline materials such as zeolites and MOFs
- Generally not more than 3 types of sites





## Pure component equations: Toth equation

• Empirical equation:

$$n^a = n_m^a \frac{bP}{(1+(bP)^t)^{1/t}}$$

*t* is a measure of the heterogeneity of the adsorbent surface

- Henry's law at low pressure

- Finite limit at high pressure

- $t \rightarrow$  1 for homogeneous surface
- $t \rightarrow$  0 for heterogeneous surface
- $t = 1 \rightarrow$  Langmuir equation





## Pure component equations: Jensen – Seaton equation

• Empirical equation:

$$n^{a} = K_{H}P\left[1 + \left(\frac{K_{H}P}{a(1+\kappa P)}\right)^{c}\right]^{-1/c}$$

- • $K_H$  = Henry's constant
- • $\mathcal{K}$  = compressibility of gas phase
- •a = saturation capacity
- *C* = positive empirical constant
- $\mathcal{K} = 0 \rightarrow$  Toth equation







## Single component equations: UniLan equation



• Resulting equation:

$$n^{a} = \frac{n_{m}^{a}}{2s} ln \left( \frac{1 + \bar{b}e^{s}P}{1 + \bar{b}e^{-s}P} \right)$$

with

$$\bar{E} = \frac{E_{max} + E_{min}}{2}$$

 $\bar{b} = b_{\infty} \exp\left(\frac{\bar{E}}{R_{z}T}\right)$ 

$$s = \frac{E_{max} - E_{min}}{2R_g T}$$

- *s* is a measure of the heterogeneity of the adsorbent surface
- High values of *s* characterize a highly heterogeneous system
- $s = 0 \rightarrow$  Langmuir equation


# Mixing Langmuir and simple empirical equations

# Pure component equations: Langmuir – Freundlich equation (Sips, 1948)

• Empirical equation:

$$n^a = n_m^a \frac{(bP)^{1/n}}{1 + (bP)^{1/n}}$$

*n* is a measure of the heterogeneity of the adsorbent surface

- No Henry's law at low pressure

- Finite limit at high pressure

- $n = 1 \rightarrow$  Langmuir equation
- Also exists in multi-site form





# Single component equations: Summary



| Model                           | Equation                                                                                      | Thermodynamic |               |                  |
|---------------------------------|-----------------------------------------------------------------------------------------------|---------------|---------------|------------------|
|                                 |                                                                                               | Low pressure  | High pressure | Henry's constant |
| Henry's law                     | $n^a = K_H(T)P$                                                                               | ✓             | ×             | K <sub>H</sub>   |
| Freundlich                      | $n^a = K_H(T)P^{1/t}$                                                                         | ×             | ×             | -                |
| Langmuir                        | $n^a = n_m^a \frac{bP}{1+bP}$                                                                 | ~             | ✓             | $n_m^a b$        |
| UniLan                          | $n^{a} = \frac{n_{m}^{a}}{2s} ln \left( \frac{1 + \bar{b}e^{s}P}{1 + \bar{b}e^{-s}P} \right)$ | ~             | ✓             |                  |
| Langmuir – Freundlich<br>(Sips) | $n^{a} = n_{m}^{a} \frac{(bP)^{1/n}}{1 + (bP)^{1/n}}$                                         | ×             | ✓             | -                |
| Toth                            | $n^a = n_m^a \frac{bP}{(1+(bP)^t)^{1/t}}$                                                     | ~             | ✓             | $n_m^a b$        |
| Jensen – Seaton                 | $n^{a} = K_{H}P\left[1 + \left(\frac{K_{H}P}{a(1+\kappa P)}\right)^{c}\right]^{-1/c}$         | ✓             | ✓             | K <sub>H</sub>   |



## The Virial equation

The Virial approach







Getting good low-pressure data is important The fitting of the experimental data is crucial  $\rightarrow$  and not always trivial



→ In the chat, can you write down which of the above equations are most often be used for RT isotherm treatment



# What KPI's can we predict ?

→ Energies
 → Selectivities





**Empirical models** 

Langmuir-based extensions

Virial model

# What KPI's can we predict?



# Calculations of energies

# Adsorption is an exothermic phenomenon



• Adsorption (physisorption) is spontaneous at all temperatures:  $\Delta G < 0$ ,  $\Delta S > 0$  and  $\Delta H < 0$ 

The Van't Hoff relationship is derived, via :

- $\Delta G^0 = \Delta H^0 T \Delta S^0$
- $\Delta G^0 = -RT \ln K^0$

To give :

• 
$$\ln K^{\circ} = -\frac{\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$$
  
Thus,  $\Delta_{vap}H^{0} = -R\frac{d \ln K^{\circ}}{d(1/T)}$ 



Assume  $K^0$  is approximately equal to  $p/p^\circ$ 

NB. For the exact relationship  $\rightarrow$  K<sup>0</sup> is equal to  $a_q/a_l = (f/p^\circ)/\Gamma_l$ , only approximately equal to  $p/p^\circ$ 

# Van't Hoff plots used in sorption





Thermodynamic Properties, Hysteresis Behavior and Stress-Strain Analysis of MgH<sub>2</sub> Thin Films, Studied over a Wide Temperature Range, Y. Pivak, H. Schreuders, B. Dam, **Crystals**, 2012, 2(2), 710-729

# Similar to Van't Hoff -> Claussius Calpeyron

• 
$$\Delta_{vap} H \approx -R \frac{d \ln (p/p^{\circ})}{d(1/T)}$$

Derivation assumes  $V_m(g) >> V_m(I)$ Ideal-gas behavior Reversible sorption behavior 'Valid' for 'small' temperature differences  $\Delta_{vap}H$  is the difference of the molar enthalpies of the real gas and the liquid at the saturation vapour pressure of the liquid

We use:

• 
$$\ln \frac{p_1}{p_2} = -\frac{\Delta_{ads}\dot{h}}{R} \left[ \frac{1}{T_2} - \frac{1}{T_1} \right]_n$$
  
 $\Delta_{ads}\dot{h} = -R.\frac{T_1.T_2}{T_2 - T_1}.\ln \left[ \frac{p_2}{p_1} \right]_{n^{\sigma}/m^s}$ 







#### 48 Modeling Adsorption Isotherms – Philip Llewellyn, AFA School, 26th January 2022

The Virial Method

•  $q_{st}(n_{exp}) = R(-lnp_{exp}) + g(n_{exp}) + ln n_{exp}$ 

At first, the adsorption data are fitted using the virial-type equation:

$$lnp = lnN + \left(\frac{1}{T}\right)\sum_{i=0}^{m} a_i N^i + \sum_{j=0}^{n} b_j N^j \quad (E3)$$

Here *p* is the pressure expressed in Torr, *N* is the amount adsorbed in mmol/g, *T* is the temperature in K,  $a_i$  and  $b_i$  are virial coefficients, and *m*, *n* represent the number of coefficients required to adequately describe the isotherms. Then the Clausius–Clapeyron equation (E1) was employed to calculate the enthalpies of CO<sub>2</sub> adsorption. Combining equations (E1) and (E3), the isosteric heat of adsorption can be calculated using the following equation:

$$Q_{st} = -R \sum_{i=0}^{m} a_i N^i \quad (E4)$$







Frederic Villieras Nancy

# Combining various equations to fully model the isotherm



Christelle Miqueu



Frédéric Plantier



Alejandro Orsikowsky

#### Mécanismes d'adsorption

Exemple sur la zéolithe 5A







Source : Martin-Calvo et al.,2014





50 | Modeling Adsorption Isotherms – Philip Llewellyn, AFA School, 26th January 2022

Soutenance thèse cifre ADAGIO, Anglet (France) - 20/12/2019

Type Modèle Equation Chaleur isostérique d'approche **TotalEnergies** Cinétique  $q_{ads} = \frac{q_{m1}b_1P}{1+b_1P} + \frac{q_{m2}b_2P}{1+b_2P}$ **BI-LANGMUIR**  $(-\Delta H)_1 = Q_1; (-\Delta H)_2 = Q_2$ thermodynamiqu  $q_{ads} = \frac{q_m b P}{[1 + (bP)^t]^{1/t}}$  $(-\Delta H) = Q - \frac{1}{t} (\alpha R_g T_0) \left\{ ln(bP) - [1 + (bP)^t] ln \left[ \frac{bP}{(1 + (bP)^t)^{1/t}} \right] \right\}$ TOTH Semi - empirique  $q_m(bP)^{1/n}$  $(-\Delta H) = Q - (\alpha R_q T_0) nln(bP)$ SIPS  $q_{ads} =$ Semi - empirique  $\frac{1}{1+(bP)^{1/n}}$  $N_2$  $CO_2$ 6 2,0% relative Experimental Expérimental 0 0 1,5% 6 • Toth 5 ---· Toth 1,0% Sips n<sup>excès</sup>(mol/kg) Erreur - Sips 0,5% nexcès (mol/kg) ----·Bi-Langmuir ---- Bi-Langmuir 0.0% 4 10 0.1 120% 3 Pression (bar) 3 relative 80% -9-9-9-9-9-9-9-2 40% 2 0% \_\_\_\_O` 0,00001 0,01 Pression (bar) L'évolution des différents paramètres avec la température est très aléatoire et dans certains cas les expressions théoriques des Chaleur isostérique modèles ne sont pas respectées (kJ/n 2<u>2</u>20 Chaleur 40 ▲本 Δ Expérimental Δ 15 -- Toth 30 Toth 10 ---- Sips 20 Sips 5 10 Bi-Langmuir -- Bi-Langmuir 0 0 10 0,01 0,1 1 0,00001 0,001 0,1 10 Pression (bar) Pression (bar)

Soutenance thèse cifre ADAGIO, Anglet (France) - 20/12/2019

IVERSITÉ

**Nouvelle méthodologie** – identification des modèles

macroscopiques

Adsorption sur site : approche thermodynamique

#### Equation de Gibbs

$$\left(\frac{d\pi}{dlnP}\right) = \frac{n}{A}RT$$
  $\pi$  : pression d'étalement

Equation d'état type van der Waals  

$$\pi\sigma = RT \frac{\sigma}{\sigma_0} ln \left(\frac{\sigma}{\sigma - \sigma_0}\right) - \frac{cw}{2} \frac{\sigma_0}{\sigma}$$

 $bP = \frac{\theta}{1-\theta} e^{(-c\theta)}$ 

 $\theta = f\left(\frac{A}{E}, n\right)$ 

#### **Paramètres**



Equation de Dubinin – Raduskevich (DR)

 $\frac{q_e}{q_m} = e^{\left[-\left(\frac{A}{E}\right)^2\right]}$ 

Expansion thermique de la phase adsorbée



TotalEnergies

Remplissage de pores : théorie du pore filling

A : potentiel d'adsorption

Forme de distribution de Weibull

 $f\left(\frac{A}{E},n\right) = e^{\left[-\left(\frac{A}{E}\right)^n\right]}$ 

Nouvelle méthodologie – exemple de l'adsorption du CO<sub>2</sub> sur la zéolithe 5A **TotalEnergies** Sites I  $\theta < \theta_{L1}$   $b_1 P = \frac{\theta}{1-\theta} e^{(-c_1\theta)}$  **FG1** Sites III  $\theta_{L2} < \theta < \theta_{L3}$   $b_3 P = \frac{\theta}{1-\theta} e^{(-c_3\theta)}$ FG3 Remplissage  $\theta_{L3} > \theta$   $\frac{qe}{qm} = e^{\left[-\left(\frac{A}{E}\right)^2\right]}$ Sites II  $\theta_{L1} < \theta < \theta_{L2}$   $b_2 P = \frac{\theta}{1 - \theta} e^{(-c_2 \theta)}$  **FG2** DR Isotherme expérimentale 283K Chaleur isostérique (kJ/mol) Isotherme expérimentale 313K Isotherme expérimentale 343K Modèle FG+DR 283 K n<sup>excès</sup> (mol/ka)  $\theta_{L3}$  Modèle FG+DR 313 K Modèle FG+DR 343 K Chaleur isostérique expérimentale 313 K ----Chaleur isostérique modèle FG + DR  $\theta_{\rm I}$ 





Nouvelle méthodologie – exemple de l'adsorption du CO<sub>2</sub> sur la zéolithe 5A











## **Calculations of selectivities**

# Extended Langmuir and related models to predict coadsorption behaviour



- Heterogeneous Extended Langmuir (Kapoor et al, 1990)
  - takes into account heterogeneity in adsorption sites through energy distribution (UniLan paramaters)
- Multi-Region Extended Langmuir (Bai and Yang, 2001)
  - takes into account differences in saturation capacities
- Multi-Region Heterogeneous Extended Langmuir (Bai and Yang, 2002) ...



# Models for predicting co-adsorption behaviour

Ideal Adsorbed Solution Theory

#### IAST avec les mains (i) chaque gaz est en équilibre avec la surface





Equilibrium gas j

#### IAST avec les mains (ii) les deux gaz s'adsorbent sans interactions g-g



y : molecules in gas phasex : molecules in adsorbed phase

#### $P_i \propto y_i P_T$

Partial pressure of species "*i*" is related to the total pressure in the mixture



Equilibrium gas j

 $P_j \propto y_j P_T$ 



Liquid film No mixing interactions (i.e. an ideal mixture)  $\pi_{tot} = \pi_i = \pi_i \dots$ 





# 

#### Raoult's law for vapour-liquid equilibria TotalEnergies



#### **Ideal solution**

- Liquid film on surface  $\rightarrow$  no lateral interactions
- Vapour equilibrium follows Raoult's law

$$\pi_{tot} = \pi_I = \pi_j \dots$$

- Relation  $\pi A = nRT$
- Relation  $p_i^{\circ} \& \pi_i$  (spreading pressure)
- *n<sup>a</sup>*<sub>*i*</sub> from single component isotherm
- $\clubsuit$  Solution non-trivial  $\rightarrow$  iteration required



IAST, les calculs



#### pyIAST: Ideal adsorbed solution theory (IAST) Python package

Cory M. Simon, Berend Smit, Maciej Haranczyk Computer Physics Communications Volume 200, March 2016, Pages 364–380

# Predicting co-adsorption behaviour: IAST pros and cons



- Advantages
  - It can be used in conjunction with any single component isotherm (Langmuir, Toth, Langmuir Freundlich, Jensen – Seaton, multi-site Langmuir ...)
  - Is purely predictive: no mixture data required
- Disadvantages
  - Assumes ideal solution  $\rightarrow$  cannot predict azeotropic behaviour
  - Can be computationally heavy depending on single component equation used

# Predicting co-adsorption behaviour: Summary



| Model  | Pure gas<br>equation | Adsorbent     | Adsorbed<br>phase | Solution  | Specific data required           |
|--------|----------------------|---------------|-------------------|-----------|----------------------------------|
| EL     | Langmuir             | homogeneous   | ideal             | explicit  |                                  |
| MR-EL  | Langmuir             | homogeneous   | ideal             | explicit  |                                  |
| HEL    | UniLan               | heterogeneous | ideal             | explicit  | Pure isotherms at 2 temperatures |
| MR-HEL | UniLan               | heterogeneous | ideal             | explicit  | Pure isotherms at 2 temperatures |
| IAST   | Any*                 | homogeneous   | ideal             | iteration |                                  |
| HIAST  | UniLan               | heterogeneous | ideal             | iteration | Pure isotherms at 2 temperatures |
| RAST   | Any*                 | homogeneous   | real              | iteration | Binary mixture data              |
| VST    | VST                  | heterogeneous | real              | iteration | Binary mixture data              |

\* Must be thermodynamically consistent



# Practical considerations when fitting isotherms

# **Practical considerations:** Importance of single component data

• Detailed low pressure data:

$$\frac{A\pi}{R_g T} = \int_0^{P_i^0} \frac{n_i^a}{P_i} dP_i$$

- Experimental data to high pressure
  - $n_i^{a,0} = f(P_i^0)$
- $P_i^0 < P_{system}$  for most adsorbed component  $P_i^0 > P_{system}$  for least adsorbed component





# Practical considerations: Choice of single component model





• Choice of model depends on shape of isotherm

# **Practical considerations:** Method for fitting single component data



40

50



# Practical considerations: Method for fitting single component data





# Practical considerations: Verification with experimental data





• Mixture adsorption data used for verification must be reliable!!

# Screening of Isostructural MOFs

Channels: ~7 Å Openings: < 4 Å  $X = H, OH, NH_2,$ NO<sub>2</sub>, OCH<sub>3</sub>, CH<sub>3</sub>



#### Effect of functionalization:





| Material                                                                            | CAU-<br>10-H | CAU-<br>10-NO <sub>2</sub> | CAU-<br>10-NH <sub>2</sub> | CAU-<br>10-OH | CAU-<br>10-<br>OCH <sub>3</sub> | CAU-<br>10-CH <sub>3</sub> |
|-------------------------------------------------------------------------------------|--------------|----------------------------|----------------------------|---------------|---------------------------------|----------------------------|
| CO <sub>2</sub> / CH <sub>4</sub><br>(50/50)<br>Selectivity<br>(IAST<br>(1 & 5 bar) | 5 - 6        | 10 - 14                    | 5 - 7                      | 3,5           | 2 - 4                           | 3 – 3.5                    |

#### ✤ -NO, increases the selectivity towards CO,

A. D. Wiersum, et al., ACS Comb. Sci., 15(2), 2013, 111-119.







# **Lessons learned**

71

Adsorbent characterization KPI : surface area, pore size

Henry J Langmuir J BET J Harkins & Jura / FHH V Kelvin J Polyani/Dubinin J Horwath-Kawazoe


